Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 30, 2026
-
In recent years, reservoir-based spatiotemporal importance resampling (ReSTIR) algorithms appeared out of nowhere to take parts of the realtime rendering community by storm, with sample reuse speeding direct lighting from millions of dynamic lights [1], diffuse multi-bounce lighting [2], participating media [3], and even complex global illumination paths [4]. Highly optimized variants (e.g. [5]) can give 100x efficiency improvement over traditional ray- and path-tracing methods; this is key to achieve 30 or 60 Hz framerates. In production engines, tracing even one ray or path per pixel may only be feasible on the highest-end systems, so maximizing image quality per sample is vital. ReSTIR builds on the math in Talbot et al.'s [6] resampled importance sampling (RIS), which previously was not widely used or taught, leaving many practitioners missing key intuitions and theoretical grounding. A firm grounding is vital, as seemingly obvious "optimizations" arising during ReSTIR engine integration can silently introduce conditional probabilities and dependencies that, left ignored, add uncontrollable bias to the results. In this course, we plan to: 1. Provide concrete motivation and intuition for why ReSTIR works, where it applies, what assumptions it makes, and the limitations of today's theory and implementations; 2. Gently develop the theory, targeting attendees with basic Monte Carlo sampling experience but without prior knowledge of resampling algorithms (e.g., Talbot et al. [6]); 3. Give explicit algorithmic samples and pseudocode, pointing out easily-encountered pitfalls when implementing ReSTIR; 4. Discuss actual game integrations, highlighting the gotchas, challenges, and corner cases we encountered along the way, and highlighting ReSTIR's practical benefits.more » « less
-
Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets’ geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.more » « less
An official website of the United States government
